Object-based Cross-attribute Attentional Effects in Bivectorial Motion Wonyeong Sohn¹, Thomas V. Papathomas¹, Erik Blaser² & Zoltán Vidnyánszky³

¹Laboratory of Vision Research, Rutgers University, ² Human Vision Laboratory, University of Massachusetts, Boston, and ³Vision Research Laboratory, Neurobiology Research Group, Hungarian Academy of Sciences

Object-based Attention

- The units of attentional selection are "visual objects" as a whole with all of their concomitant attributes
- Prediction: even if an observer attempts to direct attention to a particular attribute of an object, the whole object -and thus all of its attributes are selected

Cross-attribute Attentional Effects and Object-based Attention

- o Cross-attribute attentional (CAA) effects: the spread of attentional effects from one attribute to another
- 0
- O'Craven et al. (1999) Attention directed to the motion of a face not only activates motion processing area MT, but also FFA, the area thought responsible for face detection

However... o Does "object formation" precede CAA effects? o Early local binding of visual attributes?

- Evidence for local binding of visual attributes
- Contingent aftereffects
- Color-Orientation: McCollough Effect as early as V1 where neurons have small receptive fields (Humphrey & Goodale, 1998)
- Polarity-Motion/Color-Motion for locally paired dots (Blaser et al., 2003)

Experimental Hypothesis

o If CAA occurs locally, then it should not be affected by object-level reconfigurations.

Global and local motion components: TP

 The attributes (for instance, luminance and color) of the two dot fields are associated with different surfaces and accordingly with different local and global motion directions.

Global and local motion components: LPD

 Attributes of two dot fields are associated with different motion directions only at the local motion stage (V1). Globally, they are integrated into a single surface with the vector average motion of the two directional components (MT). (Qian et al., 1994b)

Results

- We found cross-attribute attentional effects (color motion), but only when dots were perceptually segregated into two surfaces.
- Transparent condition: the MAE duration after attending to the color of effectors was longer than after attending to that of distractors.
- LPD condition: the duration of the MAE was not significantly different for the two attentional states.

Conclusions

- Binding at the local motion processing 0 stages does not mediate cross-attribute attentional (CAA) modulation
- CAA effects are mediated by objectbased attention
- MT is likely to be responsible for object-based CAA in bivectorial transparent 0
- motion

References

- Blaser, E., Papathonse, T. Y., & Yidnyánsky, Z. (2003). Padar, econgressin Rudiou altereffects at the stope of loal notation processing. *Vision Science Society Conference*. Humphrey, G. K., & Goodale, M. A. (1998). Probing unconscious visual processing with the mocilough effect. *Conscious and Cognition*, 7, 494-519. O'Craven, K., Downing, P., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. *Nature* 407, 504-557. *Optiming, P. R.A.*, & Addeson, E. H. (1994). Transpæret notion perception as detection of unbalanced motion signals, I. Psychophysics. *Journal of Neuroscience*, *14*, 7367-7380.