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ABSTRACT An ambiguous motion paradigm, in which
the direction of apparent motion is determined by salience
(i.e., the extent to which an area is perceived as figure versus
ground), is used to assay the amplification of color by
attention to color. In the red–green colored gratings used in
these experiments, without attention instructions, salience
depends on the chromaticity difference between colored
stripes embedded in the motion sequence and the yellow
background. Selective attention to red (or to green) alters the
perceived direction of motion and is found to be equivalent to
increasing the physical redness (or greenness) by 25–117%,
depending on the observer and color. Whereas attention to a
color drastically alters the salience of that color, it leaves color
appearance unchanged. A computational model, which em-
bodies separate, parallel pathways for object perception and
for salience, accounts for 99% of the variance of the experi-
mental data.

‘‘Visual attention’’ refers to a class of mechanisms that select
incoming information for subsequent processing from a par-
ticular set of locations in space and an interval in time. When
the attended locations are determined by previous instructions
to attend to a location, we say the mechanism is ‘‘top-down’’
attention, because the attentional selection depends on the
interpretation, memory, and execution of the instructions; all
high-level cognitive processes. Locations in space and time can
also be selected ‘‘preattentively’’ by ‘‘bottom-up’’ mechanisms.
For example, attending to red items in a many-colored scene
would be an example of a top-down process. On the other
hand, a single red item in a field of gray items would be selected
on the basis of its uniqueness by preattentive, bottom-up
processes.

An abstract representation of visual space, which we term a
‘‘salience map,’’ records, at each location of the visual field, the
total attentional strength resulting from bottom-up plus top-
down selection. The salience map is assumed to record only the
attentional strength at a location; it does not record informa-
tion about particular attributes (shape, color, texture, etc.) that
produced this strength. A representation of total attentional
strength is an essential component of theories for a variety of
attentional tasks and phenomena, such as modeling the se-
quence of locations searched in visual search tasks (1), ac-
counting for the ability to perceive motion in alternating-
feature stimuli (2) and in isoluminant color gratings (3),
gaining access to short-term visual memory (4, 5), figure-
ground segmentation (2), and shape processingyobject recog-
nition (6).

The term ‘‘salience map’’ was popularized by Koch and
Ullman (6), who used the concept to describe a winner-take-all
network that determined a spatial location from which infor-
mation from various topographic feature maps is combined
and directed to a central processor. Related concepts have

emerged independently as an ‘‘attention map’’ (7), a ‘‘priority
map’’ (8), a ‘‘selective tuning mechanism’’ (9), a ‘‘hierarchical
pruning mechanism’’ (10), and under other names, with dif-
ferent authors giving somewhat different interpretations to
these concepts. In Discussion, we consider in what respects the
salience map and computations proposed here differ from
these others.

The present study poses two questions: First, how can the
impact of top-down, attentional selection be measured? In
particular, when an observer is instructed to attend to a feature
of the visual scene, e.g., red, can the resulting increase in visual
salience be expressed as an amplification of the feature, as if
the experimenter had actually increased the redness of the
stimuli? Second, what is the spatial resolution of attention, i.e.,
of the salience map? If regions of high salience occur adjacent
to regions of low salience, at what point is the resolution of the
salience map exceeded? These questions are addressed within
an ambiguous motion paradigm that lays the groundwork for
a general computational model of visual attention similar to
the kinds of theories found in low-level vision [e.g., visual
optics (11), contrast sensitivity (12–15), and motion perception
(16)].

We chose the red–green color axis as the dimension along
which attention exerts its influence. An ambiguous motion
stimulus (2) is used to assess the effectiveness of attention to
color. Without attention instructions, the probability of per-
ceiving motion in a particular direction depends on the chro-
maticity difference (redness or greenness) between a colored
stimulus embedded in the motion sequence and the back-
ground (3). In the stimuli in these experiments, selective
attention to red (or to green) is found to be equivalent to
increasing the physical redness (or greenness) by 25–117%,
depending on the observer and color. The data are used to
construct a computational salience-map model that very ac-
curately accounts for the experimental data.

METHODS

Overall Plan. The paradigm for measuring attention utilizes
a sensitive assay method, the ‘‘alternating-feature’’ motion
paradigm (2). The paradigm uses motion stimuli that are
completely neutral to the first-order (luminance-based) and
second-order (texture-based) motion systems, but nonetheless
give rise to clear and consistent apparent motion (see ref. 17
for a review). The remarkable fact is that the direction and
strength of apparent motion in these ‘‘third-order’’ motion
stimuli can be strongly influenced by attention (2, 17). There-
fore, we can calibrate attention (a top-down factor) against
bottom-up factors, such as color saturation and spatial fre-
quency, to determine attentional color amplification prior to
the third-order motion computation.

Motion Systems. In the ideal case, a motion system receives
a time-varying image as input and produces a motion flow field
as output. The flow field is a map of two-dimensional visual
space in which each local neighborhood is represented by aThe publication costs of this article were defrayed in part by page charge

payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.
§To whom reprint requests should be addressed. E-mail:
sperling@uci.edu.

11681



vector that indicates the direction and velocity of movement in
that location. The output of a motion system does not directly
indicate anything about the identity of the objects or events
that were responsible for the flow field. Such information must
be extracted by other subsystems that deal with texture, color,
shape, and other image properties. Ultimately, information
from many different subsystems is combined to generate
perception.

The first-order motion system generates its f low field from
a relatively raw luminance input in which an eye’s multicolored
visual image is represented simply as the luminance (amount
of light) at each point x, y, t, relative to the overall mean
luminance. The second-order system generates a flow field,
analogously, not from the amount of light, but from the
amount of texture. The third-order system generates a flow
field from figure-ground information. That is, the perceptual
system segregates most visual images into figure (the impor-
tant part designated for further processing) and ground (not so
designated). According to Lu and Sperling (2, 17–19), the
results of this computation are stored in a salience map where
figure is represented, for example, by 1 and ground by 0.

‘‘Figure’’ and ‘‘ground’’ are binary concepts, and not every
point on every image is so clearly divided. Therefore, we use
a real-valued variable, salience, to indicate the relative impor-
tance of each image point (in space and time). At any moment
in time, the set of instantaneous values of salience constitutes
a salience map of the visual field, corresponding, in the obvious
cases, to a figure-ground map. Third-order motion system is
assumed to use this dynamic map as its input and to compute
a flow field that gives the direction and the magnitude of
salience movement at each point as a function of time. In
effect, the third-order motion system computes the motion of
those parts of the visual field that are designated as ‘‘figure.’’

Controlling Salience. There are two different ways to in-
crease the salience of a region: an adjustment of a physical
property or an adjustment of attention. For example, increas-
ing the redness of a slightly reddish patch embedded in a large
background of homogeneous yellow will make the reddish area
more salient. The effectiveness of this manipulation depends
primarily on bottom-up, preattentive processing. Deliberately
attending to red (versus attending to green) in a stimulus that
contains both red and green patches will also make the red
regions more salient. This depends on a two-stage top-down
process; that is, the high-level cognitive process of attending
alters the low-level processing of visual inputs. [We know that
this is not a high-level process operating directly on salience
because salience is altered even in stimuli that are too brief for
the observer to consciously discriminate the to-be-attended
features (2).]

The hallmark of the study of spatial resolution in low-level
vision is the application of techniques from linear systems
analysis. For a linear system, the response to a sum of input
components is the same as the sum of the system’s response to
each component individually. Because Fourier analysis can
decompose an arbitrary input into its sinusoidal components,
knowledge of a linear system’s response to a basis set of
sinusoids is sufficient to predict the system’s response to any
input whatsoever. Our approach, therefore, is to measure the
extent to which the salience map can resolve sinusoidal stimuli
spanning a wide range of spatial frequencies. For any re-
quested distribution of visual salience, these data will, in
principle, enable the prediction of the observer’s achievable
distribution of salience.

Stimuli. In the present study, ambiguous motion stimuli are
used to assess the relative effectiveness of bottom-up and
top-down factors. The motion stimuli consist of a temporal
sequence of five spatially coincident frames, each of which
contains a vertical sinusoidal grating. The gratings appear
inside a rectangular aperture 10.7 cm wide and 6.6 cm tall.
Temporal frequency was fixed at 2.5 Hz, stimulus width was 4

cycles, and spatial frequency was 0.50 cycles per degree at a
viewing distance of 0.75 m. The stimuli used two types of
gratings, an isoluminant red–green grating and a contrast-
modulated noise grating. A motion sequence was constructed
by alternating between red–green and contrast-modulated
texture frames, with each successive frame displaced 90°
consistently to the right or left, relative to its predecessor. In
such a stimulus, the high-contrast texture patches are per-
ceived as figure. Alternating with the texture stimuli are
isoluminant color stimuli (20) containing side-by-side red and
green regions (Fig. 1). In a red–green stimulus, the color of the
area perceived as figure (i.e., having greater salience) by the
motion system depends on which color differs more from the
yellow background, which is itself simply a 50y50 mixture of
red and green. In such a color stimulus, the amount by which
a reddish or greenish area differs from the background is here
called ‘‘chromaticity difference’’ and is designated as uRu or uGu.
uRu and uGu vary from 0.0 (yellow, the background color) to
11.0 (purest available green or purest red) (Fig. 1).

Procedure. Three kinds of experimental sessions were con-
ducted in sequence. First, in neutral ‘‘baseline’’ sessions, no
attentional instructions were given, and observers simply made
leftyright direction judgments. An individual trial consisted of
a 500-msec blank frame containing a fixation point, followed
by a 5-frame motion stimulus (5 frames @ 100 msec per
frame), followed by another fixation frame. Following the
motion sequence, observers were required to enter a direction
of motion judgment. On each trial, a chromaticity difference
of red or green was chosen randomly from one of three
chromaticity differences: 0.32 (pale red or green, barely dis-
criminable from yellow), 0.60 (intermediate red or green), to

FIG. 1. Stimuli. Motion stimuli were composed of two types of
gratings, an isoluminant red–green grating and a contrast-modulated
noise grating (with same expected luminance throughout). (a) A
five-frame motion sequence with a green advantage; each successive
frame displaced 90° consistently to the right or left relative to its
predecessor. Frames are presented one on top of the other. The color
frames consist of saturated green, uGu 5 1, and pale red, uRu 5 0.32. The
arrow indicates the typical direction of apparent motion. (b) Graphic
representation of color in a green-advantage frame: uRu 2 uGu vs. x. (c)
A neutral five-frame motion sequence: uRu 5 uGu 5 1. The direction of
apparent motion in this display is determined by attention, as indicated
by arrows. (d) Graphic representation of color in a frame in which the
red advantage is zero: uRu 2 uGu vs. x.
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1.0 (highly saturated red or green). The chromaticity differ-
ence of the other color was chosen as 1.0, so that stimuli varied
from having a large green advantage (uRu 5 0.32, uGu 5 1.0) to
having a large red advantage (uRu 5 1.0, uGu 5 0.32). The
starting frame type (texture or color) was chosen randomly. In
subsequent sessions, observers viewed similar sequences of
stimuli at different distances to yield four spatial-frequency
conditions (number of spatial cycles per degree of visual
angle).

After the baseline sessions, observers were instructed to
attend to a particular color; again, sessions were conducted at
four distances. Finally, the entire procedure was repeated with
instructions to attend to the opposite color. Two observers
completed the entire series in about 64 sessions; 17,600
observations (including practice); a third observer completed
only the neutral and the ‘‘attend to red’’ conditions.

Stimulus sequences were designed so that there were always
two potential interpretations on every trial. When red areas
are rendered with a greater chromaticity difference from the
background than green areas, uRu . uGu, we say that the
stimulus has a ‘‘red advantage.’’ Red-advantage stimuli ap-
peared to move in one direction, henceforth called the red
direction. When green regions had a greater chromaticity
difference, uRu , uGu, there was a green stimulus advantage,
and apparent movement was in the opposite direction. At-
tending to red produced a similar effect to increasing the
chromaticity difference of red. In other words, increasing the
salience of an area either by increasing its redness or greenness,
or by selectively attending to red or to green, increased the
probability of perceiving motion in the direction consistent
with that color.

RESULTS

Observers’ responses are plotted as psychometric functions:
the percent of red-consistent apparent motion judgments
versus the red stimulus advantage uRu 2 uGu, (green advantage
is indicated as a negative value of red advantage). Obviously,
the greater the red stimulus advantage, the more likely ob-
servers are to perceive motion in the red-consistent direction.
In Fig. 2, the only difference between the psychometric
functions within a panel is the attentional state—the stimuli
are identical for all three curves. The size of the lateral shift
of a curve indicates the size of the attentional effect. The slope
of the psychometric functions indicates sensitivity, the steeper
the slope, the greater the sensitivity. Analysis of the data in Fig.
2 indicates that sensitivity (slope) decreases as spatial fre-
quency increases (panels from top to bottom). The size of the
attentional effect (lateral shift) is independent of spatial
frequency. As spatial frequency increases from top to bottom
in Fig. 2, the horizontal shift of the curves is the same, although
it appears to be smaller when the psychometric functions are
shallower at high spatial frequencies.

THE MODEL

Components. For each subject, the continuous curves in Fig.
2 account for 99% of the variance of the data. They are derived
from a model that includes both a bottom-up and a top-down
attentional process (Fig. 3). In the model, there are two types
of inputs: visual stimuli and attentional instructions. Visual
stimuli are analyzed along various dimensions. Shown are
channels that carry depth, orientation, texture, and color
signals. In the present experiments, only the color and texture
channels are critical for the motion computation.

The texture input into the salience computation consists of
a texture grabber (21–23), which is composed of a linear spatial
filter and a rectifier. The filter selectively responds maximally
to textures of a specific coarseness-fineness; the rectifier
computes the absolute value (removes the sign) of the filter

output (which could be positive or negative). For specificity,
we assume that texture grabbers have outputs of 1 in areas of
stimulus frames with the highest contrast texture, 0 in areas
that do not contain texture, and intermediate outputs in areas
of intermediate-contrast texture.

There are two color channels, red and green. Equivalently,
the two color channels can also be conceptualized as a single
green-minus-red channel, in which positive and negative values
are carried along separate lines, and rectified, just as in the
texture channel. Fully saturated red and fully saturated green
are both represented by 11; the background is represented by
0; intermediate colors are represented by intermediate values
proportional to their chromatic differences from the back-
ground.

At each location and instant in time x, y, t, texture, color, and
other outputs sum up their contributions to the total salience
(represented in the salience map) at that location. When there
are no attention instructions, only these bottom-up processes
are active. A field of standard motion-energy detectors (24, 25)
(the third-order motion system) takes as its input the spatio-
temporal distribution of salience and computes the third-order
motion flow field. For a particular viewing distance, the
texture frames in all stimulus sequences are equivalent, there-
fore, the directional motion energy in the flow field is deter-
mined by the amplitude and phase of the color signal. Random

FIG. 2. Results. Psychometric functions are plotted as the percent
of red-consistent motion judgments vs. the red stimulus advantage (uRu
2 uGu, the difference uRu of red from background yellow 2 the
difference uGu of green from background yellow). As red advantage
increases, observers are more likely to perceive motion in the red-
consistent direction. Data points are shown for four spatial frequencies
(rows; in cycles per degree, cpd) and three observers (columns). Solid
curves are model fits (see Fig. 3). Black (middle) curves indicate the
baseline condition (no attention instructions or n); red (r) and green
(g) curves are model fits for the attend-red and attend-green condi-
tions, respectively. The estimated model parameters for the increase
in effective uRu and uGu because of attentional amplification, ar and ag,
are indicated in the Bottom for each observer.
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noise (error) in the flow field is represented by the addition of
noise to the motion flow field; a decision process evaluates the
net flow field output and arrives at a decision of ‘‘left’’ versus
‘‘right’’ motion.

Top-Down and Bottom-Up Control of Salience. In the
model, instructions to attend to a color, say red, are assumed
to increase the gain of the attended color signal to a value
greater than 1.0, so that the attended color input is amplified.
For example, if top-down attention to red were to amplify the
red-filter output by 1.3, this would indicate an attentional
amplification of 30%. Top-down attentional amplification is
independent of spatial frequency and of the color (or texture)
composition of the input stimuli.

FigureyGround. The bottom-up process described above is
assumed to be automatic figureyground segmentation: Small

areas, areas that contain high-contrast texture, and areas that
differ markedly from their surroundings are assigned higher
salience values relative to large, homogeneous areas, and tend
to become segmented as figure rather than as ground. The
present theory does not offer specific algorithms to determine
figureyground marking in general, but such rules would be
similar to those that have been proposed in the first half of the
century by the Gestaltists and that have been proposed, for
example, by attention theorists (e.g., refs. 1 and 6–10). For the
restricted stimuli used in the present experiment, the only
computation needed is the amount by which the local texture
(in the texture stimuli) or the local color (in the color stimuli)
differs from the homogeneous background—a much simpler
computation.

Computational Efficiency. Although the model is cast
within a physiologically plausible framework, it is a computa-
tional model that describes the microprocesses of attention. As
a computational model, it accounts for 60 data points for each
observer (5 stimuli, 3 attention states, 4 viewing distances) with
minimally only four parameters estimated from an observer:
the amplification factors aG, aR, for selective attention to
green or to red; the amount of noise N, which determines the
slope of the psychometric functions; and the spatial ‘‘corner’’
frequency fc, which describes the spatial frequency at which
sensitivity has been reduced by 1y2. (Spatial filtering in texture
and color is assumed to be identical.) These parameters would
have been sufficient to generate the predictions similar to Fig.
2. However, our primary interest is not in obtaining the
absolutely most parsimonious computational account, but in
demonstrating that a simple model that is consonant with
reasonable physiological processes can provide a quite accu-
rate account.

Attentional Amplification Is Constant, Only the Manifes-
tation Varies with Spatial Frequency and with the RedyGreen
Composition of the Stimuli. We wish to test the hypothesis that
a single parameter suffices to describe attentional amplifica-
tion of an attended color (aG and aR) under all conditions. To
test this hypothesis, it is necessary to make all other parts of the
model as accurate as possible so that an attention parameter
is not used by the fitting algorithm to correct deficiencies
elsewhere in the model. In order that small errors in describing
the shape of the spatial filter function with a single corner
parameter would not affect the above conclusion, we used
three parameters to completely describe the spatial filter
function for each observer (Fig. 4b). These spatial ‘‘tuning
functions’’ represent the sensitivity of the channels as a
function of spatial frequency. The corner frequency is between
2 and 4.5 cycles per degree for the three observers. All the
changes in slope of the psychometric functions with spatial
frequency are a consequence of the limited spatial resolution
of this single filter. Additionally, a bias parameter was used for
observer EB to account for the fact that the stimuli were not
perfectly equal for him in the neutral attention condition—red
was somewhat more salient. Given accurate specification of the
nonattentional aspects of performance, a single attention
parameter for ‘‘attention to red’’ and another parameter for
‘‘attention to green’’ was sufficient to predict for each of the
observers, 99% of the variation in performance with attention
for the 5 stimuli in each of 4 viewing distances.

Obviously, in Fig. 2, the apparent effect of selective atten-
tion is smaller when stimuli are smaller (high spatial frequen-
cies) and when the red and green stripes in the stimuli differ
greatly in saturation. For example, when the red stimulus
advantage is very large, differences in selective attention make
very little difference in performance. That one parameter per
attentional state suffices to account for all the data means that
these apparent differences in the effects of attention in dif-
ferent conditions are merely incidental manifestations of
attentional states. All the data are accounted for by just three

FIG. 3. A computational model of attentional processes in third-
order motion embedded in a more comprehensive model of visual
processing. The inputs to the model are stimuli and attentional
instructions; the computational output is a direction-of-motion judg-
ment. There are two types of inputs: visual stimuli and attentional
instructions. Stimulus inputs are analyzed along various dimensions:
depth, orientation, texture (TG, texture grabber), and color channels
are indicated. For the present experiments, it is only necessary to
consider color (red and green) and texture processing. Instructions to
attend to a color are assumed, in only the salience pathway, to increase
the gain of the attended color signal to a value greater than 1.0, so that
the attended color input is amplified by 1 1 ag or 1 1 ar. The ‘‘Salience
Map’’ is the sum of all the stimulus inputs in the salience pathway; its
output goes to the ‘‘Motion III’’ (third-order) computation, and also
joins the stimulus inputs in the object-processing pathway. Motion III
is represented as a Reichardt model (24); it produces a real-valued
output that indicates a direction of motion and is perturbed by additive
noise (N). “sf” denotes a spatial frequency filter; “tf” denotes a
temporal frequency filter. A decision process outputs a response
‘‘Right’’ if its input is greater than a criterion, and ‘‘Left’’ otherwise.
The third-order motion signal is also available to subsequent percep-
tual processes, as indicated.
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states of attention: neutral, attention-to-red, and attention-to-
green.

DISCUSSION

Attention Modifies Only Salience, Not Appearance. It is
critical to note that, in the model, the color input to only the
salience map is amplified: color inputs to object perception
processes are unchanged. This corresponds to the empirical
fact that attention to color does not change the appearance of
color (26), although it may make judgments of appearance
slightly more reliable from trial to trial. It is perfectly obvious
in observing our stimuli that they do not change their appear-
ance when attention is selectively directed toward red or green.
A change of a few percent in redness or greenness would be
easily visible and does not occur when deliberately attending
to red or green in stationary stimuli. Certainly, the equivalent
changes in salience, 25% and more, are orders of magnitude
larger than any possible change in appearance because of
attention. This makes perfect sense from functional and
physiological points of view: Attention to color should direct
processing to colored locations so that whatever is present
there (including color) is processed more accurately, but
attention should not alter the appearance of the attended
color. The distinction between the large effect of selective
attention in altering the importance of an object or area of the
visual field (its salience), and the small effect of attention in
altering the representation of the object itself is absolutely

critical, especially in gaining understanding of the neurophys-
iological correlates of attention.

The salience map, which provides the input to the third-
order motion computation, also provides the input to other
processes. Because most scenes contain enormously more
information than can be remembered (27), there is a selection
of to-be-remembered locations; we assume that this selection
is determined by the salience map. The salience map is also
assumed to control input to object-recognition processes. It
directs object-discrimination processes to compute the shape
of those parts of the field that have been categorized as figure,
and not to compute the shape of those parts that have been
categorized as ground.

Parallel Attentional Processes. The selection of some parts
of the visual input for object processing and, ultimately, for
storage in memory, obviously involves attenuation of the
to-be-forgotten items (or equivalently, amplification of the
to-be-remembered items). At the point where the to-be-
forgotten items are excluded from memory, they will have been
attenuated almost to 0, relative to the to-be-remembered
items. Thus, according to the computational model set forth
here, there are two conceptually different representations of
the stimulus: First, there is the complex representation of the
stimulus itself, in which the local relations between features are
unaltered by selective attention. Second, there is the relatively
simple salience map representation, in which internal relations
between features are dramatically altered by attention (bot-
tom-up or top-down). Corresponding to these two represen-
tations are two different kinds of attentional amplification:
first, attentional amplification that determines salience; sec-
ond, attentional attenuation that determines selection for
subsequent processing.

Previous computational theories (e.g., refs. 1 and 6–10) have
dealt primarily with selection, and have not been concerned
with the possibility of two qualitatively different representa-
tions, one for salience, another for selection. Typically, these
models have a ‘‘winner-take-all’’ architecture, in which one
item or object at a time is selected for further processing
according to ‘‘preattentive’’ (bottom-up) and attentive (top-
down) mechanisms. Can physiological data discriminate be-
tween the inner workings of all these proposed attentional
mechanisms? There has been explosive growth of research that
deals with attention effects measured in brain-imaging studies
of human subjects, and in single cell records of behaving
primates, including quantitative modeling of single cell re-
sponses in an attentional system (30); nevertheless, the phys-
iological basis of the salience map and of the attentional
processes proposed here remains to be discovered.

How the Salience Model Applies to Common Paradigms In
third-order motion, output of the salience map is the input to
a field of motion detectors that compute a motion flow field
(Fig. 3). In other tasks, other recipients of the salience map
output become critical. For example, in a partial report (iconic
memory) experiment, an observer views a stimulus with, say,

FIG. 5. Figure-ground ambiguities. (a) Ambiguous face–vase
(31). (b) Normally, trees are seen as figure, and the space between
as ground. However, when the space is attended, or when it has
a meaningful shape, it also can be seen as figure. (Courier & Ives,
ca. 1835).

FIG. 4. Visual salience modulation transfer functions. The model
parameter corresponding to bottom-up amplification (i.e., filter
throughput without attentional amplification) is plotted against spatial
frequency on log-linear coordinates. Data, shown for three observers,
are typical of spatial tuning functions for third-order motion in other
tasks (17).
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three rows of letters, and a cue directs himyher to report a
particular row. Here, we assume that the salience map controls
the input to short-term memory. That is, the attentional cue
produces top-down activation of the appropriate region of the
salience map; this is the mechanism by which access to
short-term memory is controlled. In experiments where only
one row is displayed, top-down activation is unnecessary;
bottom-up activation of the salience map determines that it is
the row with letters, not a blank row, that is recorded in
memory. Insofar as third-order motion reveals dynamic prop-
erties of the salience map rather than of the third-order
motion-detection process, it is enormously more efficient to
derive the properties of the salience map from motion exper-
iments than from partial-report experiments.

In pattern recognition, the salience map is assumed to
determine what part of the field is sent to object recognition
mechanisms. Patternyshape recognition processes are as-
sumed to operate only on the parts of the field that are
designated as figure, i.e., those parts that have high values of
salience. Normally, figureyground segregation is a bottom-up
process, determined by the texture, shape, and other properties
of the visual input. Sometimes, figureyground segregation is
ambiguous, as in Fig. 5a; more often, it is not. For example, in
a forest, we normally see the trees as ‘‘figure’’ and the spaces
between the trees as ‘‘ground.’’ However, when we wish to
know whether the space between two trees will enable us—and
not whatever is chasing us—to fit through, the space has to
become figure. In terms of the salience map computation,
attending to the space between trees produces a sufficient
increase in the salience value of that area, so that the open
space, not the trees, is sent forward to pattern-recognition
processes. That observers can compute the shape of the space
between trees is nicely illustrated in Fig. 5b.

Guided Search. Perhaps visual search is the paradigm that
has been used the most to study visual pattern recognition.
Typically, an observer views an array of items that includes a
target and nontargets (distracters). The search process consists
of examining the elements, either in serial or in parallel, or in
some combination, to discover the target. Theories of visual
search involve the strategic allocation of processing resources
(1, 28, 29), according to priorities that are determined by a
priori probabilities of finding particular kinds of targets in
particular locations and by the properties of the stimulus being
viewed. Because it combines both bottom-up and top-down
influences, the salience map provides an ideal mechanism to
implement precisely this kind of ‘‘guided search.’’

Summary and Conclusions. The full panoply of predictions
that can be derived from the computational model still remains
to be tested. However, the experimental paradigm that has
been put forward here has enabled us to measure the func-
tional amplification produced by visual attention to color in a
variety of conditions. The model draws an important distinc-
tion between the very large attentional amplification of the
salience of an attended color, while the appearance of the color
itself is not significantly changed. The attentional amplification
of salience is considerable: The maximum amplification values
for each of the three observers were 46%, 26%, and 117%. The
computational model put forward here is consistent with our

overall understanding of the attentional components of the
brain processes involved in attentionally determined apparent
motion, in object recognition, and in short-term memory, and
it provides a highly accurate account of a considerable data set.
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